
[Bhushan, 2(9): September, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[2577-2581]

IJESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

Custom Web Scrapping For Content Aggregation From E-Commerce Websites
Bhushan J*1, Nijagunarya2

*1,2Siddaganga Institute of Technology, Tumkur, Karnataka, India
vishal.vis20@gmail.com

Abstract
 Today’s internet user has a limited amount of time to mine the Internet manually for content such as
videos, images, and documents that they want to view. In such case much of the user’s time is wasted overhead:
waiting for pages to load, clicking hyperlinks, and downloading the content for offline viewing. Therefore, many
users would benefit from an application that could automatically crawl and download a large amount of content
from the Internet. A lot of effort is put by customers and information seekers to collect useful information from E-
commerce websites, information that is needed includes price of consumer products, related description, and other
product related attributes. In the present situation where the websites change dynamically, there is a need for a
system which is able to collect information for users irrespective of the changes to the web content. In this paper,
we propose a novel approach for aggregation of information using Custom Web Scrapper. The results are discussed
by procuring information from some popular E-commerce websites.

Keywords: Web scraping, E-commerce Websites, Information aggregation, HTML Parser.

Introduction
Web has come a long way from being a

collection of documents to an organized, dynamically
evolving entity which changes with the addition of new
content every day. Any organization which seeks out
information regarding products from large scale and
small scale dealers obtains the same from retailers; the
data so obtained is in an unorganized and raw format. It
becomes difficult for the organization to organize the
data obtained. There is an overhead involved with the
traditional approach where useful data needs to be
extracted, processed and analyzed. A need arises to
address the issue of organization of data from
unstructured information of the web. The data so
extracted can be used by Organizations to increase the
efficiency of their business process and address the in
demand areas which form the focus. Users often need to
browse only a portion of a Webpage. On commercial
pages, for example, users probably want the price and
product description and some details about product.
Consequently, they are often required to search the page
for the required information either by manually or by
using the string search capability provided by the
browser. If user’s target pages are frequently modified, it
is a heavy burden for the users to keep up with the latest
information by repeating these Web browsing operations.
To reduce this operational cost we have developed
Custom Web Scraper [CWS].

Related Work
Although information is structured form inside

database on the Web, such information is still flattened
out for presentation, segmented into “pages” and
aggregated into separate “sites”. Anyone wishing to
retain a piece of that information must bookmark the
page and continuously repeat the effort of locating the
piece of information within the page. To collect several
items spread across multiple sites together, one must
bookmark all the corresponding pages.
Search engines were invented to break down websites
barriers letting users query the whole web rather than
multiple sites separately. Some of the search engines
available in market are listed below.
Chickenfoot
Chickenfoot[2] is an Firefox extension the script are
written as set of java scripts which includes related
function for specific web tasks. As the chickenfoot is
embedded in browser itself it runs very slow because it is
running with the browser which interprets javascript and
Ajax calls. This makes impractical to scrap the amount of
data present in million of threads. Chickenfoot interact
with browser with the help of commands. Chickenfoot is
primarily aimed at interaction with the browser but can
also be used for scraping with the find() command. Here
is an example script for scraping search results from a
Google search:

[Bhushan, 2(9): September, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[2577-2581]

go("www.google.com")
enter("chickenfoot")
click("Google Search")
for(m=find("link"); m.hasMatch; m=m.next) {
var link = m.element;
if(link.getAttribute("class") == "l") {
output(link.href);
}
}

This script searches Google for chickenfoot and returns
the links that have a class of l, which from examining the
Google HTML source is an attribute unique to the search
result links.

Piggy Bank
Piggy bank is also Firefox extension. The end user writes
the scrapping script along with regular expressions
relevant to the WebPages [3]. Piggy bank scraps data
when user navigates to the matching webpage with
respect to user script. Disadvantage of this tool is only
eleven scripts can be submitted at a point of time.

Sifter
Sifter [6] builds on top of Piggy Bank's infrastructure but
tries to scrape semantic data automatically from any
webpage. However the scraper has limited scope and
only looks for the biggest group of links in a webpage.
This is relevant to a commerce site like Amazon where
the books are a series of links, but usually we will not
want to extract the biggest group of links. For instance
the biggest group of links in a web forum is generally
navigation-related and not directly relevant to a given
thread in isolation. Consequently, Sifter does not solve
our scraping problem.

Scrubyt
Scrubyt is written in Ruby language. Scrubyt takes user
input as key, searches for the key in webpage and
extracts all the similar item from webpage. Here is the
Scrubyt version of the Chickenfoot example to scrape
Google search results:

google_data = Scrubyt::Extractor.define do
fetch "http://www.google.com/ncr"
fill_textfield "q", "ruby"
submit
link "Ruby Programming Language" do
url "href", :type => :attribute
end
end

This script searches Google for ruby and then uses the
known title for the o_cial Ruby website to automatically

build a model of the search results. It then extracts the
links from this model.

Newprosoft
Web Content Extractor provides serious automation of
the website scraping task. Usually, you only need to
specify a basic extraction pattern (done in few clicks too)
and run the extraction process. The program
automatically scans the provided URLs and scrapes all
the info that meets the specified template. Content
extraction from urls, page links, and following the web
index links, unable to adapt and address the dynamically
changing nature of web. When the content in webpage is
added or deleted the index of whole webpage changes.

Proposed Custom Web Scrapper (CWS)

In our proposed system, we crawl and parse all
pages one by one and fetch the required data.
The custom web scraper gets the input from the database;
the input contains the name of the retailer and urls of the
related products.

Fig 1: Architecture of Custom Web Scraper

Most of the scraping tools available in market

parse the HTML page by positional indexing [7] (seed
and test documents) and pattern generation [8] (seed
documents only). Defined by the elements in the (X)
HTML structure by partitioning the document into
individual nodes, and identifying the text associated with
each. The assumption made here is that each text chunk
is within element boundaries and we need to identify the
relative position of the element.

This tool is designed mainly considering
commercial websites like Amazon, Flipkart bestbuy etc.
The underlying assumption is that each commercial
websites have same HTML layout for each products. As
we has observed web pages are very volatile. The content

[Bhushan, 2(9): September, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[2577-2581]

of webpage is written and changed daily. Parsing by
position (Indexing) is not a feasible idea. When the web
developer modifies or adds some more data the indexing
of whole page changes, the programmer need to find the
new position of the required data, and pass the indexing
to the crawler for scraping data. This is the painful job
for the programmer to find the indexing every time when
there is change in page. Keeping this in mind we undergo
an assumption that all the pages from a particular site
(Amazon) maintain same layout. Each element has
predefined tags and class name.

Most of the product prize changes regularly
with market demand and available resources for
manufacturing the respective product and also retailers

need to keep track of the stock – in such case it is
literally impossible to manually keep track of those
attributes. In all these cases our url scraping application
serves its purpose by extracting data from listed url and
store them in database for future use, we can use similar
approach to update product listings in url whenever
change is necessary.
The proposed system consists of 4 modules named
INPUT, CRAWLER, SCRAPPER and OUTPUT.

INPUT Module:

Crawler gets URLs and related attributes (OEM,
retailer, etc...) from Input module which is either from a
file or database.

Fig 2: Input fed to the CWS.

Original equipment manufacturer (OEM) is the
manufacturer’s name of the product, Retailer purchase
large quantities of goods directly from manufacturer and
sells to the consumer, some of the retailers are Amazon,
Best Buy, Flipkart etc. Stock-Keeping Unit (SKU) is the
unique ID for the product given by manufacturer. The
URLs to be crawled are stored in INPUT. Here the
INPUT is either a Database or a file.

CRAWLER Module:

The crawler gets list of URLs as input from the
INPUT. User can specify the criteria to crawl according
to OEM or RETAILER or All. According to the criteria
crawler fetches the data from INPUT. When the
CRAWLER ask for URLs the INPUT fetches the
Database and place all the URLs in a List data structure,
later passes this List to the CRAWLER. The CRAWLER
parses [] all the URLs one by one, get the HTML page

and place all the nodes in NodeList. This NodeList is
passed to the SCRAPER component.

CRAWLER_ALGORITHM (USER_CRITERIA)
BEGIN
READ URL, INPUT_ATTRIBUTES from
DATA_STORE USING USER_CRITERIA
FOR EACH URL
 RETRY_COUNT <- 1
 READ_PASSED <- false
 WHILE RETRY_COUNT <= 5
 READ HTML Page
 IF NO_READ_ERROR
 THEN
 READ_PASSED <- true
 BREAK
 END IF
RETRY_COUNT <- RETRY_COUNT + 1
 END WHILE
 IF READ_PASSED

[Bhushan, 2(9): September, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[2577-2581]

 THEN
 PARSE HTML AS Nodes s
 CALL SCRAPPER_COMPONENT
WITH Nodes
 CALL OUTPUT_WRITER WITH
OUTPUT_ATTRIBUTE, INPUT_ATTRIBUTE

 END IF
END FOR
END

SCRAPPER Module:

Here in SCRAPPER Module desired data is
fetched and logs the triggered events in database. When
required data is not fetched, an event is logged to the
database such as CRAWLER fails to load the URL or
fails to parse the URL.
Since each retailer will have different HTML layout, it is
necessary to have different scrapper component for
different retailers. SCRAPER Checks for which Retailer
it is being called and plug-in the corresponding extractor.
For Ex: If an Amazon URL is being Crawler SCRAPER
initiates the corresponding extractor i.e. Amazon

extractor which scrapes the related data from the
Amazon URL.SCRAPER component writes the events to
database which is triggered by the extractor, events such
as failed to scrap the provided attributes, new layout etc.
When the SCRAPER triggers any event it notifies the
user by sending mail regarding cause for the event and
input details.

SCRAPPER_COMPONENT (Nodes)
BEGIN
 FOR EACH Node in Nodes
 GET PRICE_DATA FROM Node
 STORE PRICE_DATA INTO
OUTPUT_ATTRIBUTES
 END FOR
 RETURN OUTPUT_ATTRIBUTES
END

OUTPUT Module:
Once the SCRAPER completes the task it writes the
scraped data to the database or File. The fig 3 shows the
scraped content for the giving input as described in Input
module.

Fig 3: Output data extracted from CWS tool.

OUTPUT_WRITER (OUTPUT_ATTRIBUTES,
INPUT_ATTRIBUTES)
BEGIN
 WRITE OUTPUT_ATTRIBUTES,
INPUT_ATTRIBUTES INTO DATA_STORE
END

Results Produced

While developing the CWS we fine-tuned to
work well on E-commerce sites. We ran the CWS

against new prosoft tool and the results obtained are
better, the fig. 3 shows the compared scrapping output
which has extracted the content such as List Price, Price,
SKU Number and ASIN.

[Bhushan, 2(9): September, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[2577-2581]

Fig 2: Scraped comparison between CWS and

New Prosoft

With 178 url scrapped with both model, results shows
that – using CUSTOM_WEB_SCRAPPER 115 List
price are extracted successfully out of 178 resulting in
65% coverage where as at the same time
NEW_PROSOFT is only able to extract 79 resulting in
44% coverage, similarly for price and SKU Number
CUSTOM_WEB_SCRAPPER outperform
NEW_PROSOFT with 83%-57% and 96%-48%
coverage respectively.

Fig 3: Time taken by the CWS against New Prosoft

The figure 3 clearly shows that the time taken by the
Custom WebScraper to handle the number of URL
requests is very less compared to that of NewProsoft.
Thus custom WebScraper proves to be efficient in terms
of time taken to handle multiple numbers of requests and
scrape the accurate required data.

Future Work
 Our Custom Web Scraper results are
overwhelming and efforts will be made to improve the
results obtained. Input module gets the url from database
which had the copy of url content of remote database and
we need to explicitly update url database – as future

work we will make this update happening in real time.
The whole project has been written in java and we would
like to build this functionality into browser such that it
helps people to compare product with rival retailers
against the prize.

Conclusion
 Custom Web Scraper has been tested with
different retailer url’s on e-commerce websites such as
amazon, ebay, BestBuy and many more retailers. The
result obtained won’t be affected as long as the html tags
are same for given retailer. Robustness of this result
helps many organisations who are handling the product
details of OEM for retailer websites.

References

[1] M. Bolin, M. Webber, P. Rha, T. Wilson, and R.
Miller. Automation and customization of
endered web pages. In UIST '05: Proceedings of
the 18th Annual ACM symposium on User
Interface Software and Technology, pages
163{172, New York, USA, 2005.

[2] Lars Graammel, Margaret-Anne Storey “An
End User Perspective on Mashup Makers”
University of Victoria Technical Report DCS-
324-IR, September 2008

[3] D. Huynh, S. Mazzocchi and D. Karger “Piggy
Bank: Experience the Semantic Web Inside
Your Web Browser”

[4] R. B. Penman, T. Baldwin, D. Martinez “Web
Scrapping Made Simple with SiteScrapper”.

[5] Hammer, Joachim, Hector Garcia-Molina,
Junghoo Cho, Rohan Aranha, and Arturo
Crespo. “Extracting Semistructured Information
from the Web.” (1997).

[6] D. Huynh, R. Miller, and D. Karger. Enabling
web browsers to augment web sites' filtering
and sorting functionalities. In UIST '06:
Proceedings of the 19th Annual ACM
symposium on User Interface Software and
Technology, pages 125-134, New York, USA,
2006.

[7] Pan, Alberto, et al. "Semi-Automatic Wrapper
Generation for Commercial Web Sources"
Engineering Information Systems in the Internet
Context 231 (2002): 265-283.

[8] Fernández Villamor, José Ignacio, Jacobo
Blasco Garcia, Carlos Angel Iglesias Fernandez,
and Mercedes Garijo Ayestaran. "A Semantic
Scraping Model for Web Resources-Applying
Linked Data to Web Page Screen Scraping."
(2011): 451-456.

